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The high pressure behavior of titanium nitride �TiN� was investigated using synchrotron radial x-ray
diffraction �RXRD� under nonhydrostatic compression up to 45.4 GPa in a diamond-anvil cell. We
obtained the hydrostatic compression equation of state of TiN. Fitting to the third-order Birch–
Murnaghan equation of state, the bulk modulus derived from nonhydrostatic compression data
varies from 232 to 353 GPa, depending on angle �, the orientation of the diffraction planes with
respect to the loading axis. The RXRD data obtained at �=54.7° yield a bulk modulus K0

=282�9 GPa with pressure derivative K0� fixed at 4. We have analyzed the deformation
mechanisms by analyzing the �111�, �200�, �220�, �311�, and �222� peaks in the x-ray diffraction
under pressures. The ratio of uniaxial stress component to shear modulus t /G ranges from 0.007–
0.027 at the pressure of 6.4–45.4 GPa. It was found that the TiN sample could support a maximum
uniaxial stress component t of 8.6 GPa, when it started to yield at 45.4 GPa under uniaxial
compression. And the aggregate elastic moduli of TiN at high pressure were determined from the
synchrotron RXRD measurements. © 2010 American Institute of Physics. �doi:10.1063/1.3392848�

I. INTRODUCTION

Titanium nitride �TiN� as a new type of metal compound
coating material with unique combination properties aroused
great research interests. Such as good corrosion resistance,
good wear resistance, high melting point, high toughness,
high thermal conductivity, and high electrical
conductivity.1–3 These superior properties have made TiN
widely used in various industrial applications. TiN belongs to
a class of so called refractory metals compounds.4 At ambi-
ent pressure, TiN keeps an NaCl-type structure like other
refractory transition metal nitrides.5

Recently, much interest has been inspired on investigat-
ing the behavior of materials under extreme pressures by
using diamond-anvil cell �DAC�, especially using the radial
x-ray diffraction �RXRD� experiments in DAC. The advan-
tages of such RXRD experiments are that, the information of
materials can be obtained from different spatial directions.
The elasticity and plastic deformation effects as well as the
hydrostatic equation of state can be obtained from the highly
nonhydrostatic compression data under high pressures. Al-
though, there are large number of experiments devoted to
various aspects of TiN film growth3,6,7 and many theoretical
calculations about elastic modulus for TiN,4,8 direct experi-
mental measurements of elastic properties, strength, and
plastic deformation behavior are rare. However, Zhao et al.9

investigated the behavior of TiN using axial x-ray diffraction
under high pressure to 30.1 GPa. Their experimental results
suggested an isostructural phase transition at about 7 GPa as
shown by the discontinuity of V /V0 data with pressure. The

purpose of this study is to investigate the equation of state
and stress state of TiN in a DAC under uniaxial stress con-
ditions with the synchrotron RXRD,10–13 Together with the
lattice strain theory,12–16 we also determined the aggregate
moduli of TiN at high pressure from the RXRD measure-
ments.

II. EXPERIMENT

A panoramic DAC with a culet size of 300 �m was
used in the experiment. TiN powder �Alfa, 99.7%� was
loaded into 50 �m diameter hole of a boron gasket which
made of a boron–epoxy central disk of 400 �m diameter
surrounded by a Kapton® �DuPont� confining ring 120 �m
thick.17 A piece of �15 �m Pt was placed on top within
20 �m of the sample center and served as a pressure
standard18 as well as a position reference for the RXRD mea-
surement. No pressure-transmitting medium was used.
Energy-dispersive RXRD experiments13,16 were performed at
the high-pressure collaborative access team �HPCAT�, beam-
line 16-BMB of the advanced photon source, Chicago, USA.
The diffracted intensity was recorded using a Ge solid-state
detector with a fixed angle at 2�=12.0°. The incident x-ray
beam was focused by a pair of Kirkpatrick–Baez mirrors to
approximately 7�10 �m2 and directed through the boron
gasket and the sample. The DAC was mounted in a rotation
stage whose axis bisects 2�. The RXRD patterns were taken
at �=0°, 15°, 30°, 54.7°, 60°, 75°, and 90°, respectively. The
� is the angle between the diffraction plane normal and the
cell-loading axis. Before data collection, the cell was
scanned in the horizontal and vertical directions while re-
cording x-ray transmission with a photodiode to make sure
that the incident x-ray beam goes through the sample center.
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At each pressure load, RXRD patterns were taken at different
angles and the pressures were determined from the lattice
parameter of Pt. For the TiN sample, the analysis was based
on the diffraction lines of �111�, �200�, �220�, �311�, and
�222�.

III. THEORY

Lattice strains theory at the center of the compressed
specimen in a DAC under nonhydrostatic pressure conditions
has been described elsewhere.15,16,19,20 Here, we present a
short summary of the main features. The stress tensor in the
center of a diamond cell sample can be expressed as

� = ��1 0 0

0 �1 0

0 0 �3
� = ��p 0 0

0 �p 0

0 0 �p
�

+ �− t/3 0 0

0 − t/3 0

0 0 2t/3
� , �1�

where �1 and �3 are the radial and axial stress components,
respectively. �p is the mean normal stress �or equivalent hy-
drostatic pressure�. The difference between the �1 and �3 is
the uniaxial stress component t, which is taken to be positive
on compression,

t = �3-�1 � 2� = Y , �2�

where � is the shear strength and Y is the yield strength of
the material. Actually, t could be less than the yield strength
before the sample is yielded.19

The equation for the d spacing measured by x-ray dif-
fraction is given by following relation:

dm�hkl� = dp�hkl��1 + �1 – 3 cos2 ��Q�hkl�� , �3�

where dm�hkl� is the measured d spacing and dp�hkl� is the d
spacing under the hydrostatic pressure, Q�hkl� is given by

Q�hkl� = �t/3��	�2GR�hkl��−1 + �1-	��2GV�−1	 . �4�

GR�hkl� and GV�hkl� are the shear moduli of the aggregate
under the Reuss �isostress� and Voigt �isostrain� approxima-
tions, respectively, and are not orientation dependent. The
parameter 	, which varies between 0 and 1, specifies the
degree of stress and strain continuity across grains in the
sample.

For the cubic system,

�2GR�−1 = S11-S12-3S
�hkl� , �5�

where S, a measure of the elastic anisotropy, is given by

S = S11-S22-S44/2, �6�

and


�hkl� = �h2k2 + k2l2 + h2l2�/�h2 + k2 + l2�2 �7�

and

�2Gv�−1 = ��5/2���S11-S12�S44�	/�3�S11-S22� + S44� , �8�

where the Sij are the single-crystal elastic compliances.

According to Eq. �3�, dm�hkl� should vary linearly with
1–3 cos2 �. The dp�hkl� can be directly measured at �
=54.7° �namely 1–3 cos2 �=0�. The slope of the dm�hkl�
versus 1–3 cos2 � relation yields the product dp�hkl�Q�hkl�.

Equations �4�–�6� indicate a linear relationship between
Q�hkl� and 
�hkl� with slope m1 and intercept m0 given by

m0 = �t/3��S11-S22� , �9�

m1 = -�t/3��S11-S22-S44/2� , �10�

for the case where 	=1.
The linear compressibility � of a cubic crystal is given

by

� = -�� ln a/�p�T = 1/3K = S11 + 2S22, �11�

where a is the lattice parameter and K is the isothermal bulk
modulus.

According to Eq. �4�, the uniaxial stress component t can
be estimated using the relation16,19,20

t = 6G
Q�hkl�� , �12�

where 
Q�hkl�� represents the average Q�hkl� value over all
observed reflections, and G is the aggregate shear modulus
of the polycrystalline sample. If the uniaxial stress compo-
nent t has reached its limiting value of yield strength at high
pressures, t /G=6
Q�hkl�� will reflect the ratio of yield
strength to shear modulus.21 We can deduce the three elastic
compliances S11, S22, and S44 of a cubic material using above
information, and can invert the three independent elastic
stiffnesses C11, C12, and C44.

20

IV. RESULTS AND DISCUSSION

Figure 1 shows the RXRD patterns of the TiN sample at
different �, which are measured under the conditions corre-
sponding to a hydrostatic pressure of 33.9 GPa at room tem-
perature. It can be seen that diffraction peaks always shift to
smaller energy as � increased, reflecting that increase in
strain as the diffraction plane normal approaches the maxi-
mum stress axis. Here the pressure is determined using the Pt

FIG. 1. X-ray diffraction patterns of the TiN sample taken at different angles
under the same loading. The pressure is determined from the lattice param-
eter of Pt observed at �=54.7°.
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scale18 from the RXRD data obtained at �=54.7°. Based on
the lattice strain theory,15,16,19,20 the observed d spacing at
�=54.7° equals to the d spacing under hydrostatic compres-
sion of the sample. Therefore, the hydrostatic compression
curve can be directly derived from the diffraction data at �
=54.7°.

The d spacing as a function of 1–3 cos2 � for selected
diffraction lines of TiN and Pt at different pressures are
shown in Fig. 2. As expected from the theory, for both TiN
and Pt, the measured d spacing varies linearly with
1–3 cos2 �. As shown in the Fig. 2, the d spacing increases
with the � increasing from �=0° to 90°. It indicates that the
uniaxial stress component reaches a maximum at �=0°, then
the uniaxial stress component drops off with the � increasing
and reaches a minimum at �=90°. The values of Q�hkl� for
different diffraction planes can be obtained by the slope of
the dm�hkl� versus 1–3 cos2 � at different pressures.

The compression curves derived from our experiments
vary smoothly with pressure increasing at different angles
��=0°, 54.7°, and 90°� are shown in Fig. 3. The variation in
the relative volume V /V0 �V0 is the unit-cell volume at zero
pressure, V is the volume at nonzero pressure� with direction
is caused by the uniaxial stress component t, which is limited
by the yield strength of material. The unit-cell volumes ob-

served at different pressures were fitted to the third-order
Birch–Murnaghan equation of state �EOS�. The bulk modu-
lus K0 obtained at �=54.7° is 282�9 GPa with K0� fixed at
4, which corresponds to the hydrostatic compression
curve.11,13,16 Therefore, the hydrostatic compression curve

FIG. 2. Dependence of observed d spacing on 1–3 cos2 � for selected diffraction lines of TiN and Pt at different pressure. The pressure are determined from
the lattice parameter of Pt obtained at �=54.7°. The pressures are listed to the right of each line.

FIG. 3. Compression curves of TiN from lattice parameters measured at �
=0°, 54.7°, and 90° under different pressures. The pressure is determined
from the lattice parameter of Pt at each direction. The solid lines are the
Birch–Murnaghan equation fits to the data.
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can be obtained from highly nonhydrostatic data by choosing
proper angle between the stress axis and the diffraction vec-
tor. Table I summarizes the bulk modulus and its pressure
derivative of TiN from previous experiments and theoretical
calculations. Our value for bulk modulus is in very good
agreement with the experimental value from Gubanov et
al.21 and the theoretical value obtained by generalized gradi-
ent approximation implemented density functional theory
�GGA-DFT�.4 Our RXRD value of the bulk modulus is less
than the acoustic microscope values. The differences may be
caused by the different experimental method and also in the
different nature of the samples used. The bulk moduli ob-
tained from fits using the third-order Birch–Murnaghan EOS
at maximum stress direction �=0° and minimum stress di-
rection �=90° are 232�14 GPa and 353�19 GPa, respec-
tively.

The dependence of Q�hkl� on 3
�hkl� at pressure P
=45.4 GPa is shown in Fig. 4. For TiN, a linear relationship
is observed. It confirms the linear relationship between
Q�hkl� and 3
�hkl� indicated by theory. The aggregate shear
modulus G and Young’s modulus E are derived from the Cij
at high pressure.24 If we know the shear modulus G, we can
obtain uniaxial stress component t of TiN using Eq. �12� at
each pressure step. The ratio of uniaxial stress component t
to shear modulus t /G for TiN is shown in Fig. 5. It varies
from 0.007–0.027 in the pressure range of 6.4–45.4 GPa.
The change of t /G with pressure may predicate that the TiN
starts yielding, and t reaches its limiting value at a nonhy-
drostatic compression of �18 GPa, which means that the
TiN sample begins to yield at about 18 GPa. The value of

t /G can be directly obtained from the average slope of the d
spacing versus 1–3 cos2 � relation.11,19,20 As TiN sample has
deformed plastically, the uniaxial stress component t is
equivalent to the yield strength, and the t /G reflects the ratio
of yield strength to shear modulus.11 The value of yield
strength reaches the highest value 8.6 GPa at the highest
pressure 45.4 GPa. It is larger than those stiff pure metals,
such as molybdenum20 and tungsten,24 which are investi-
gated using RXRD under high pressure. However, compared
with the strong solid materials SiC25 and Al2O3,26 the yield
strength of TiN is less than them. The SiC started to yield at
�14 GPa, and the yield strength is 13.6 GPa by analyzing
the diffraction peak broadening under nonhydrostatic
compression.25 The yield strength of Al2O3 reaches a maxi-
mum of 12 GPa at perssure 70 GPa.26 It appears that the
measured t /G above the yield point could reflect the hard-
ness for the strong materials under nonhydrostatic
compression.24

Figure 6 shows that the aggregate elastic moduli of TiN
vary with the pressures. Using the third-order Birch–
Murnaghan equation, the bulk modulus are directly derived
from the RXRD measurements at �=54.7°. The aggregate

TABLE I. A summary of the bulk modulus and its pressure derivative of
TiN in this work and others methods.

Method
K0

�GPa� K0� Reference

RXRD 282�9 4 �fixed� This work
Experiment 288 Ref. 21
Acoustic microscope 320 Ref. 22
GGA 282 4.2 Ref. 4
Ab initio calculation 390 Ref. 23

FIG. 4. Q�hkl� as a function of 3
�hkl� for TiN at maximum pressure 45.4
GPa. The estimated errors on Q�hkl� are derived from the scatter of the
dm�hkl� vs 1–3 cos2 � relation.

FIG. 5. Ratio of uniaxial stress component t to shear modulus G for TiN
sample. The estimated errors are obtained from the scatter of d�hkl� vs
1–3 cos2 �.

FIG. 6. Values of aggregate moduli calculated from RXRD measurements
for TiN sample at high pressure. The solid triangles, squares, and circles
express the aggregate Young’s modulus, bulk modulus, and shear modulus,
respectively.
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Young’s modulus E and shear modulus G can be deduced
from the intrinsic relationship. As shown in Fig. 6, the three
moduli all increase with the augmentation of the pressure.
The solid triangles, squares, and circles express the aggregate
Young’s modulus, bulk modulus, and shear modulus, respec-
tively. The solid lines are the linear fitting. From the linear
fitting, the slope and intercept of TiN are known. Therefore,
we can obtain the normal equation of the aggregate elastic
moduli for TiN, as follows:

B = 275.4 + 3.5 P, �13�

G = 202.3 + 2.5 P, �14�

E = 487.7 + 6.2 P, �15�

where B, G, and E are the bulk modulus, shear modulus, and
Young’s modulus, respectively.

V. CONCLUSION

In summary, the elastic and plastic properties of TiN are
systematically studied using synchrotron RXRD measure-
ments together with the lattice strain theory in our study. The
hydrostatic compression curve can be obtained from highly
nonhydrostatic data by choosing proper angle between the
stress axis and the diffraction vector by RXRD technique.
The hydrostatic component has been obtained at �=54.7°,
which yields a bulk modulus K0=282�9 GPa with its pres-
sure derivative K0� fixed at 4. Our result is in good agreement
with experimental value from Ref. 21 and the theoretical
calculation value.4 The agreement between results obtained
in our study and those obtained with other methods demon-
strates that the reliability of the technique in our experiment.
The yield strength of TiN sample obtained in this work
reaches the highest value 8.6 GPa at the highest pressure
45.4 GPa under uniaxial compression. It appears that the
measured t /G reflects the hardness for the strong materials
above the yield point under nonhydrostatic compression. The
yield strength of TiN is considerably larger than those re-
ported strong materials such as molybdenum and tungsten at
static high pressure. Moreover, by analyzing the nonhydro-
static compression data, we obtained the aggregate elastic
moduli as the functions of pressure.
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